+app.json_encoder = JSONEncoder
+config = configparser.ConfigParser()
+config.read(os.environ['SEEPARKINI'])
+apikey = config.get('openweathermap', 'apikey')
+cityid = config.get('openweathermap', 'cityid')
+
+
+def open_engine(config):
+ user = config.get('database', 'user')
+ pwd = config.get('database', 'password')
+ host = config.get('database', 'hostname')
+ db = config.get('database', 'database')
+ engine = create_engine('mysql+mysqldb://{}:{}@{}/{}'.format(user, pwd, host, db), echo=False)
+ return engine
+
+
+def select_sensordata(initial_where, initial_sql_args):
+ engine = open_engine(config)
+ with engine.connect() as conn:
+ where = [initial_where]
+ sql_args = [initial_sql_args]
+ begin = None
+ end = None
+ if 'begin' in request.args:
+ where.append('timestamp>=%s')
+ begin = request.args.get('begin', None, parse_datetime)
+ sql_args.append(begin)
+ if 'end' in request.args:
+ where.append('timestamp<=%s')
+ end = request.args.get('end', None, parse_datetime)
+ sql_args.append(end)
+ sql = 'select * from sensors where {} order by id'.format(' and '.join(where))
+ cursor = conn.execute(sql, *sql_args)
+ result = [dict(row) for row in cursor]
+
+ mode = request.args.get('mode', 'full')
+ if mode == 'consolidated':
+ if begin is None or end is None:
+ pass
+ else:
+ # copied from munin/master/_bin/munin-cgi-graph.in
+ resolutions = dict(
+ day = 300,
+ week = 1800,
+ month = 7200,
+ year = 86400,
+ )
+ duration = (end - begin).total_seconds()
+ day = 60 * 60 * 24
+ if duration < day:
+ resolution = resolutions['day']
+ elif duration < 7 * day:
+ resolution = resolutions['week']
+ elif duration < 31 * day:
+ resolution = resolutions['month']
+ else:
+ resolution = resolutions['year']
+ # TODO: filter out samples from 'result'
+ # like loop over results and skip if timestamp(n+1)-timestamp(n)<resolution
+
+ format = request.args.get('format', 'default')
+ if format == 'c3':
+ c3result = defaultdict(list)
+ for row in result:
+ c3result[row['sensor_id']].append(row['value'])
+ dt = row['timestamp'].strftime('%Y-%m-%d %H:%M:%S')
+ c3result[row['sensor_id'] + '_x'].append(dt)
+ result = c3result
+ return result
+
+
+def currentairtemperature(apikey, cityid):
+ """Retruns the tuple temperature, datetime (as float, datetime) in case of success, otherwise None, None."""
+ try:
+ weatherdata = openweathermap_json(apikey, cityid)
+ return weatherdata['main']['temp'], datetime.datetime.fromtimestamp(weatherdata['dt'])
+ except OpenWeatherMapError:
+ return None, None
+
+
+def currentwatertemperature(sensorid):
+ engine = open_engine(config)
+ with engine.connect() as conn:
+ cursor = conn.execute('select value, timestamp from sensors where sensor_id=%s order by timestamp desc limit 1', sensorid)
+ result = [dict(row) for row in cursor]
+ return result[0]['value'], result[0]['timestamp']
+
+
+@app.route('/api/<version>/sensors/')
+def sensors(version):
+ """List all sensors found in the database"""
+ engine = open_engine(config)
+ with engine.connect() as conn:
+ cursor = conn.execute('select distinct sensor_id, sensor_name, value_type from sensors')
+ result = [dict(row) for row in cursor]
+ return jsonify(result)
+
+
+@app.route('/api/<version>/sensor/id/<sensor_id>')
+def sensorid(version, sensor_id):
+ """Return all data for a specific sensor
+
+ URL parameters:
+ begin=<datetime>, optional, format like "2018-05-19T21:07:53"
+ end=<datetime>, optional, format like "2018-05-19T21:07:53"
+ mode=<full|consolidated>, optional. return all rows (default) or with lower resolution (for charts)
+ format=<default|c3>, optional. return result as returned by sqlalchemy (default) or formatted for c3.js
+ """
+ result = select_sensordata('sensor_id=%s', sensor_id)
+ return jsonify(result)
+
+
+@app.route('/api/<version>/sensor/type/<sensor_type>')
+def sensortype(version, sensor_type):
+ """Return all data for a specific sensor type
+
+ URL parameters:
+ begin=<datetime>, optional, format like "2018-05-19T21:07:53"
+ end=<datetime>, optional, format like "2018-05-19T21:07:53"
+ mode=<full|consolidated>, optional. return all rows (default) or with lower resolution (for charts)
+ format=<default|c3>, optional. return result as returned by sqlalchemy (default) or formatted for c3.js
+ """
+ result = select_sensordata('value_type=%s', sensor_type)
+ return jsonify(result)
+
+
+@app.route('/data/', defaults={'timespan': 1})
+@app.route("/data/<int:timespan>", methods=['GET'])
+def data(timespan):
+ granularity = 5 * timespan # (every) minute(s) per day
+ samples = 60/granularity * 24 * timespan # per hour over whole timespan
+ s4m = []
+ s4m_x = []
+ s5m = []
+ s5m_x = []
+ end = time.time()
+ start = end - samples * granularity * 60
+
+ for i in range(int(samples)):
+ s4m.append(uniform(-10,30))
+ s5m.append(uniform(-10,30))
+ s4mt = uniform(start, end)
+ s5mt = uniform(start, end)
+ s4m_x.append(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(s4mt)))
+ s5m_x.append(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(s5mt)))