X-Git-Url: https://git.toastfreeware.priv.at/chrisu/seepark.git/blobdiff_plain/a1d05cd0dfe510c23f626b81e31ba765096a0046..8d3a37ebef201f8e6e68ee50d56be21aa6352e82:/web/seepark_web.py?ds=sidebyside diff --git a/web/seepark_web.py b/web/seepark_web.py index 0ba8f57..70b0d4b 100644 --- a/web/seepark_web.py +++ b/web/seepark_web.py @@ -1,4 +1,6 @@ +import collections import datetime +import itertools import time import configparser import os @@ -59,6 +61,11 @@ def parse_datetime(date_str): return datetime.datetime.strptime(date_str, '%Y-%m-%dT%H:%M:%S') +def ntimes(it, n): + for v in it: + yield from itertools.repeat(v, n) + + def get_sqlalchemy_database_uri(config): user = config.get('database', 'user') pwd = config.get('database', 'password') @@ -185,6 +192,32 @@ def select_openweatherdata_grouped(cityid, begin, end): return query.all() +def estimate_swimmer_count(date): + return date.day + + +def select_swimmerdata(begin, end): + def report_times(begin, end): + d = begin + while d < end: + for t in [10, 15]: + a = datetime.datetime.combine(d.date(), datetime.time(t)) + if a >= d: + yield a + d += datetime.timedelta(days=1) + SwimmerData = collections.namedtuple('SwimmerData', ['datetime', 'count']) + for d in report_times(begin, end): + count = estimate_swimmer_count(d) + yield SwimmerData(d, count) + + +def swimmerdata_to_xy(swimmerdata): + swimmerdata = list(swimmerdata) + x = np.array([d.datetime for d in swimmerdata]) + y = np.array([d.count for d in swimmerdata]) + return x, y + + def convert_to_c3(result, id, field_x, field_y): c3result = defaultdict(list) for row in result: @@ -332,6 +365,7 @@ def report(year, month): water_data = sensordata_to_xy(select_sensordata(mainsensor, 'Wassertemperatur', begin, end)) air_data = openweatherdata_to_xy(select_openweatherdata(cityid, begin, end)) + swimmer_data = swimmerdata_to_xy(select_swimmerdata(begin, end)) report_times = [datetime.time(10), datetime.time(15)] report_data = {'Wasser': water_data, 'Luft': air_data} @@ -348,9 +382,11 @@ def report(year, month): # graphic plt.figure(figsize=paper_size) + report_colors = [] for label, data in sorted(report_data.items(), reverse=True): x, y = data - plt.plot(x, y, label=label) + lines = plt.plot(x, y, label=label) + report_colors.append(lines[0].get_color()) plt.xticks(days_datetime, [''] * len(days_datetime)) plt.ylabel('Temperatur in °C') plt.axis(xmin=begin, xmax=end) @@ -366,6 +402,8 @@ def report(year, month): for label in sorted(report_data.keys(), reverse=True): for t in report_times: rows.append('{:02d}:{:02d} {} °C'.format(t.hour, t.minute, label)) + for t in report_times: + rows.append('{:02d}:{:02d} Badende'.format(t.hour, t.minute)) cells = [] for label, data in sorted(report_data.items(), reverse=True): for t in report_times: @@ -381,7 +419,20 @@ def report(year, month): cell = '{:.1f}'.format(value) row_cells.append(cell) cells.append(row_cells) - table = plt.table(cellText=cells, colLabels=columns, rowLabels=rows, loc='bottom') + for t in report_times: + row_cells = [] + x, y = swimmer_data + for d in days_datetime: + report_datetime = datetime.datetime.combine(d.date(), t) + closest_index = np.argmin(np.abs(x - report_datetime)) + if abs(x[closest_index] - report_datetime) > datetime.timedelta(hours=1): + cell = 'N/A' + else: + cell = y[closest_index] + row_cells.append(cell) + cells.append(row_cells) + row_colors = list(ntimes(report_colors + ['w'], len(report_times))) + table = plt.table(cellText=cells, colLabels=columns, rowLabels=rows, rowColours=row_colors, loc='bottom') table.scale(xscale=1, yscale=2) plt.title(title) plt.subplots_adjust(left=0.15, right=0.97, bottom=0.3) # do not cut row labels