X-Git-Url: https://git.toastfreeware.priv.at/chrisu/seepark.git/blobdiff_plain/d782d33862c95ae0fd1c2b0f8cd75a9cbc2af95b..05d8fc00160e8338da700bafdfc7cf4541e77d71:/web/seepark_web.py?ds=sidebyside diff --git a/web/seepark_web.py b/web/seepark_web.py index c6ceffb..a2d7706 100644 --- a/web/seepark_web.py +++ b/web/seepark_web.py @@ -15,8 +15,8 @@ from matplotlib.backends.backend_pdf import PdfPages from flask import Flask, render_template, jsonify, request, abort, Response, make_response import flask.json -from flask_sqlalchemy import SQLAlchemy, inspect -from sqlalchemy import func +from flask_sqlalchemy import SQLAlchemy +from sqlalchemy import func, inspect MONTH_DE = [ 'Jänner', @@ -85,7 +85,8 @@ app.json_encoder = JSONEncoder app.config['SQLALCHEMY_DATABASE_URI'] = get_sqlalchemy_database_uri(config) app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False db = SQLAlchemy(app) -db.reflect(app=app) +with app.app_context(): + db.reflect() class Sensors(db.Model): @@ -192,32 +193,6 @@ def select_openweatherdata_grouped(cityid, begin, end): return query.all() -def estimate_swimmer_count(date): - return date.day - - -def select_swimmerdata(begin, end): - def report_times(begin, end): - d = begin - while d < end: - for t in [10, 15]: - a = datetime.datetime.combine(d.date(), datetime.time(t)) - if a >= d: - yield a - d += datetime.timedelta(days=1) - SwimmerData = collections.namedtuple('SwimmerData', ['datetime', 'count']) - for d in report_times(begin, end): - count = estimate_swimmer_count(d) - yield SwimmerData(d, count) - - -def swimmerdata_to_xy(swimmerdata): - swimmerdata = list(swimmerdata) - x = np.array([d.datetime for d in swimmerdata]) - y = np.array([d.count for d in swimmerdata]) - return x, y - - def convert_to_c3(result, id, field_x, field_y): c3result = defaultdict(list) for row in result: @@ -376,7 +351,6 @@ def report(year, month): water_data = sensordata_to_xy(select_sensordata(mainsensor, 'Wassertemperatur', begin, end)) air_data = openweatherdata_to_xy(select_openweatherdata(cityid, begin, end)) - swimmer_data = swimmerdata_to_xy(select_swimmerdata(begin, end)) report_times = [datetime.time(10), datetime.time(15)] report_data = {'Wasser': water_data, 'Luft': air_data} @@ -413,8 +387,6 @@ def report(year, month): for label in sorted(report_data.keys(), reverse=True): for t in report_times: rows.append('{:02d}:{:02d} {} °C'.format(t.hour, t.minute, label)) - for t in report_times: - rows.append('{:02d}:{:02d} Badende'.format(t.hour, t.minute)) cells = [] for label, data in sorted(report_data.items(), reverse=True): for t in report_times: @@ -422,26 +394,17 @@ def report(year, month): x, y = data for d in days_datetime: report_datetime = datetime.datetime.combine(d.date(), t) - closest_index = np.argmin(np.abs(x - report_datetime)) - if abs(x[closest_index] - report_datetime) > datetime.timedelta(hours=1): + if len(x) == 0: cell = 'N/A' else: - value = y[closest_index] - cell = '{:.1f}'.format(value) + closest_index = np.argmin(np.abs(x - report_datetime)) + if abs(x[closest_index] - report_datetime) > datetime.timedelta(hours=1): + cell = 'N/A' + else: + value = y[closest_index] + cell = '{:.1f}'.format(value) row_cells.append(cell) cells.append(row_cells) - for t in report_times: - row_cells = [] - x, y = swimmer_data - for d in days_datetime: - report_datetime = datetime.datetime.combine(d.date(), t) - closest_index = np.argmin(np.abs(x - report_datetime)) - if abs(x[closest_index] - report_datetime) > datetime.timedelta(hours=1): - cell = 'N/A' - else: - cell = y[closest_index] - row_cells.append(cell) - cells.append(row_cells) row_colors = list(ntimes(report_colors + ['w'], len(report_times))) table = plt.table(cellText=cells, colLabels=columns, rowLabels=rows, rowColours=row_colors, loc='bottom') table.scale(xscale=1, yscale=2)