1 <?xml version="1.0" encoding="UTF-8"?>
2 <OAI-PMH xmlns="http://www.openarchives.org/OAI/2.0/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd">
3 <responseDate>2007-02-08T22:18:16Z</responseDate>
4 <request verb="GetRecord" identifier="oai:arXiv.org:math/0612188" metadataPrefix="arXiv">http://arXiv.org/oai2</request>
8 <identifier>oai:arXiv.org:math/0612188</identifier>
9 <datestamp>2006-12-15</datestamp>
10 <setSpec>math</setSpec>
13 <arXiv xmlns="http://arxiv.org/OAI/arXiv/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://arxiv.org/OAI/arXiv/ http://arXiv.org/OAI/arXiv.xsd">
17 <keyname>Peña</keyname>
18 <forenames>Javier López</forenames>
21 <keyname>Navarro</keyname>
22 <forenames>Gabriel</forenames>
26 <title>On the classification and properties of noncommutative duplicates</title><categories>math.RA math.KT math.QA</categories><comments>11 pages, no figures</comments><subj-class>Rings and Algebras; K-Theory and Homology; Quantum Algebra</subj-class><msc-class>16W35; 16S35; 16E40</msc-class><abstract> We give an explicit description of the set of all factorization structures,
27 or twisting maps, existing between the algebras k^2 and k^2, and classify the
28 resulting algebras up to isomorphism. In the process we relate several
29 different approaches formerly taken to deal with this problem, filling a gap
30 that appeared in a recent paper by Cibils. We also provide a counterexample to
31 a result concerning the Hochschild (co)homology appeared in a paper by J.A.
32 Guccione and J.J. Guccione.