import os
import sys
from collections import defaultdict
+import io
+import numpy as np
+import matplotlib
+matplotlib.use('pdf')
+import matplotlib.pyplot as plt
+from matplotlib.backends.backend_pdf import PdfPages
+
from flask import Flask, render_template, jsonify, request, abort, Response, make_response
import flask.json
from flask_sqlalchemy import SQLAlchemy, inspect
from sqlalchemy import func
+MONTH_DE = [
+ 'Jänner',
+ 'Februar',
+ 'März',
+ 'April',
+ 'Mai',
+ 'Juni',
+ 'Juli',
+ 'August',
+ 'September',
+ 'Oktober',
+ 'November',
+ 'Dezember']
+
+DAY_OF_WEEK_DE = [
+ 'Montag',
+ 'Dienstag',
+ 'Mittwoch',
+ 'Donnerstag',
+ 'Freitag',
+ 'Samstag',
+ 'Sonntag']
+
# https://stackoverflow.com/a/37350445
def sqlalchemy_model_to_dict(model):
return result.value, result.timestamp
+def add_month(date):
+ return (date + datetime.timedelta(days=42)).replace(day=1)
+
+
@app.route('/api/<version>/sensors/')
def sensors(version):
"""List all sensors found in the database"""
@app.route('/report/<int:year>-<int:month>')
def report(year, month):
- import io
- import numpy as np
- import matplotlib.pyplot as plt
- from matplotlib.backends.backend_pdf import PdfPages
+
+ begin = datetime.datetime(year, month, 1)
+ end = add_month(begin)
+ data = list(select_sensordata(mainsensor, 'Wassertemperatur', begin, end))
+ x = np.array([d.timestamp for d in data])
+ y = np.array([d.value for d in data])
+
+ days_datetime = []
+ d = begin
+ while d < end:
+ days_datetime.append(d)
+ d = d + datetime.timedelta(1)
binary_pdf = io.BytesIO()
with PdfPages(binary_pdf) as pdf:
- a4 = (21./2.54, 29.7/2.54)
+ a4 = (29.7/2.54, 21./2.54)
+ title = 'Seepark Wassertemperatur {} {}'.format(MONTH_DE[begin.month-1], begin.year)
+ report_times = [datetime.time(10), datetime.time(15)]
+
+ # graphic
plt.figure(figsize=a4)
- x = np.arange(100)
- y = np.sin(x/4)
plt.plot(x, y)
+ plt.xticks(days_datetime, [''] * len(days_datetime))
+ plt.ylabel('Temperatur in °C')
+ plt.axis(xmin=begin, xmax=end)
+ plt.grid()
+ plt.title(title)
+
+ # table
+ columns = []
+ for d in days_datetime:
+ columns.append('{}.'.format(d.day))
+ rows = []
+ for t in report_times:
+ rows.append('Wasser {:02d}:{:02d} °C'.format(t.hour, t.minute))
+ cells = []
+ for t in report_times:
+ columns.append('{}.'.format(d.day))
+ row_cells = []
+ for d in days_datetime:
+ report_datetime = datetime.datetime.combine(d.date(), t)
+ closest_index = np.argmin(np.abs(x - report_datetime))
+ if abs(x[closest_index] - report_datetime) > datetime.timedelta(hours=1):
+ cell = 'N/A'
+ else:
+ value = y[closest_index]
+ cell = '{:.1f}'.format(value)
+ row_cells.append(cell)
+ cells.append(row_cells)
+ table = plt.table(cellText=cells, colLabels=columns, rowLabels=rows, loc='bottom')
+ table.scale(xscale=1, yscale=2)
+ plt.title(title)
+ plt.subplots_adjust(left=0.15, right=0.97, bottom=0.3) # do not cut row labels
pdf.savefig()
+
+ pdf_info = pdf.infodict()
+ pdf_info['Title'] = title
+ pdf_info['Author'] = 'Chrisu Jähnl'
+ pdf_info['Subject'] = 'Wassertemperatur'
+ pdf_info['Keywords'] = 'Seepark Wassertemperatur'
+ pdf_info['CreationDate'] = datetime.datetime.now()
+ pdf_info['ModDate'] = datetime.datetime.today()
+
response = make_response(binary_pdf.getvalue())
response.headers['Content-Type'] = 'application/pdf'
response.headers['Content-Disposition'] = 'attachment; filename=seepark_{:04d}-{:02d}.pdf'.format(year, month)