]> ToastFreeware Gitweb - chrisu/seepark.git/blobdiff - web/seepark_web.py
Add link to current and previous month's report.
[chrisu/seepark.git] / web / seepark_web.py
index 9ff09e0121f814307824ebca321d39287f732a29..c6ceffb8614b6f049317983f6372bcc217e12048 100644 (file)
@@ -1,7 +1,482 @@
-from flask import Flask, render_template
+import collections
+import datetime
+import itertools
+import time
+import configparser
+import os
+import sys
+from collections import defaultdict
+import io
+import numpy as np
+import matplotlib
+matplotlib.use('pdf')
+import matplotlib.pyplot as plt
+from matplotlib.backends.backend_pdf import PdfPages
+
+from flask import Flask, render_template, jsonify, request, abort, Response, make_response
+import flask.json
+from flask_sqlalchemy import SQLAlchemy, inspect
+from sqlalchemy import func
+
+MONTH_DE = [
+    'Jänner',
+    'Februar',
+    'März',
+    'April',
+    'Mai',
+    'Juni',
+    'Juli',
+    'August',
+    'September',
+    'Oktober',
+    'November',
+    'Dezember']
+
+DAY_OF_WEEK_DE = [
+    'Montag',
+    'Dienstag',
+    'Mittwoch',
+    'Donnerstag',
+    'Freitag',
+    'Samstag',
+    'Sonntag']
+
+
+# https://stackoverflow.com/a/37350445
+def sqlalchemy_model_to_dict(model):
+    return {c.key: getattr(model, c.key)
+        for c in inspect(model).mapper.column_attrs}
+
+
+class JSONEncoder(flask.json.JSONEncoder):
+    def default(self, object):
+        if isinstance(object, datetime.datetime):
+            return object.isoformat()
+        elif isinstance(object, db.Model):
+            return sqlalchemy_model_to_dict(object)
+        return super().default(object)
+
+
+def parse_datetime(date_str):
+    return datetime.datetime.strptime(date_str, '%Y-%m-%dT%H:%M:%S')
+
+
+def ntimes(it, n):
+    for v in it:
+        yield from itertools.repeat(v, n)
+
+
+def get_sqlalchemy_database_uri(config):
+    user = config.get('database', 'user')
+    pwd = config.get('database', 'password')
+    host = config.get('database', 'hostname')
+    db = config.get('database', 'database')
+    return 'mysql+mysqldb://{}:{}@{}/{}'.format(user, pwd, host, db)
+
+
+config = configparser.ConfigParser()
+config.read(os.environ['SEEPARKINI'])
+apikey = config.get('openweathermap', 'apikey')
+cityid = config.get('openweathermap', 'cityid')
+mainsensor = config.get('webapp', 'mainsensor')
+
 app = Flask(__name__)
+app.json_encoder = JSONEncoder
+app.config['SQLALCHEMY_DATABASE_URI'] = get_sqlalchemy_database_uri(config)
+app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False
+db = SQLAlchemy(app)
+db.reflect(app=app)
+
+
+class Sensors(db.Model):
+    __tablename__ = 'sensors'
+
+
+class OpenWeatherMap(db.Model):
+    __tablename__ = 'openweathermap'
+
+
+def calc_grouping_resolution(begin, end):
+    """How many data points should be between the timestamps begin and end?"""
+    # copied from munin/master/_bin/munin-cgi-graph.in
+    # except day: 300 -> 600
+    resolutions = dict(
+        day   =   600,
+        week  =  1800,
+        month =  7200,
+        year  = 86400,
+    )
+    duration = (end - begin).total_seconds()
+    day = 60 * 60 * 24
+    if duration <= day:
+        resolution = resolutions['day']
+    elif duration <= 7 * day:
+        resolution = resolutions['week']
+    elif duration <= 31 * day:
+        resolution = resolutions['month']
+    else:
+        resolution = resolutions['year']
+    return resolution
+
+
+def select_sensordata(sensor_id, sensor_type, begin, end):
+    query = Sensors.query
+    if sensor_id is not None:
+        query = query.filter(Sensors.sensor_id == sensor_id)
+    if sensor_type is not None:
+        query = query.filter(Sensors.value_type == sensor_type)
+    if begin is not None:
+        query = query.filter(Sensors.timestamp >= begin)
+    if end is not None:
+        query = query.filter(Sensors.timestamp <= end)
+    return query.all()
+
+
+def sensordata_to_xy(sensordata):
+    sensordata = list(sensordata)
+    x = np.array([d.timestamp for d in sensordata])
+    y = np.array([d.value for d in sensordata])
+    return x, y
+
+
+def select_sensordata_grouped(sensor_id, sensor_type, begin, end):
+    # determine resolution (interval in seconds for data points)
+    resolution = calc_grouping_resolution(begin, end)
+
+    # Let the database do the grouping. Example in SQL (MySQL):
+    # select to_seconds(datetime) DIV (60*60*24) as interval_id, min(datetime), max(datetime), min(temp), avg(temp), max(temp), count(temp) from openweathermap group by interval_id order by interval_id;
+    query = db.session.query(func.to_seconds(Sensors.timestamp).op('div')(resolution).label('g'),
+            func.from_unixtime(func.avg(func.unix_timestamp(Sensors.timestamp))).label('timestamp'),
+            func.avg(Sensors.value).label('value'),
+            Sensors.sensor_id, Sensors.value_type, Sensors.sensor_name)
+    if sensor_id is not None:
+        query = query.filter(Sensors.sensor_id == sensor_id)
+    if sensor_type is not None:
+        query = query.filter(Sensors.value_type == sensor_type)
+    query = query.filter(Sensors.timestamp >= begin)
+    query = query.filter(Sensors.timestamp <= end)
+    query = query.group_by('g', Sensors.sensor_id, Sensors.value_type, Sensors.sensor_name)
+    return query.all()
+
+
+def select_openweatherdata(cityid, begin, end):
+    query = OpenWeatherMap.query.filter(OpenWeatherMap.cityid == cityid)
+    if begin is not None:
+        query = query.filter(OpenWeatherMap.datetime >= begin)
+    if end is not None:
+        query = query.filter(OpenWeatherMap.datetime <= end)
+    return query.all()
+
+
+def openweatherdata_to_xy(openweatherdata):
+    openweatherdata = list(openweatherdata)
+    x = np.array([d.datetime for d in openweatherdata])
+    y = np.array([d.temp for d in openweatherdata])
+    return x, y
+
+
+def select_openweatherdata_grouped(cityid, begin, end):
+    # determine resolution (interval in seconds for data points)
+    resolution = calc_grouping_resolution(begin, end)
+
+    # Let the database do the grouping. Example in SQL (MySQL):
+    # select to_seconds(datetime) DIV (60*60*24) as interval_id, min(datetime), max(datetime), min(temp), avg(temp), max(temp), count(temp) from openweathermap group by interval_id order by interval_id;
+    query = db.session.query(func.to_seconds(OpenWeatherMap.datetime).op('div')(resolution).label('g'),
+            func.from_unixtime(func.avg(func.unix_timestamp(OpenWeatherMap.datetime))).label('datetime'),
+            func.avg(OpenWeatherMap.temp).label('temp'),
+            OpenWeatherMap.cityid)
+    OpenWeatherMap.query.filter(OpenWeatherMap.cityid == cityid)
+    query = query.filter(OpenWeatherMap.datetime >= begin)
+    query = query.filter(OpenWeatherMap.datetime <= end)
+    query = query.group_by('g', OpenWeatherMap.cityid)
+    return query.all()
+
+
+def estimate_swimmer_count(date):
+    return date.day
+
+
+def select_swimmerdata(begin, end):
+    def report_times(begin, end):
+        d = begin
+        while d < end:
+            for t in [10, 15]:
+                a = datetime.datetime.combine(d.date(), datetime.time(t))
+                if a >= d:
+                    yield a
+            d += datetime.timedelta(days=1)
+    SwimmerData = collections.namedtuple('SwimmerData', ['datetime', 'count'])
+    for d in report_times(begin, end):
+        count = estimate_swimmer_count(d)
+        yield SwimmerData(d, count)
+
+
+def swimmerdata_to_xy(swimmerdata):
+    swimmerdata = list(swimmerdata)
+    x = np.array([d.datetime for d in swimmerdata])
+    y = np.array([d.count for d in swimmerdata])
+    return x, y
+
+
+def convert_to_c3(result, id, field_x, field_y):
+    c3result = defaultdict(list)
+    for row in result:
+        c3result[str(getattr(row, id))].append(getattr(row, field_y))
+        dt = getattr(row, field_x).strftime('%Y-%m-%d %H:%M:%S')
+        c3result[str(getattr(row, id)) + '_x'].append(dt)
+    return c3result
+
+
+def request_arg(key, type, default=None):
+    """Returns the key from the request if available, otherwise the default value.
+    In case type is provided and the key is present, the value is converted by calling type.
+    In other words: Reimplement request.args.get but don't return default value if
+    type raises a ValueError."""
+    if key in request.args:
+        try:
+            return type(request.args[key])
+        except ValueError as e:
+            abort(Response(str(e), 400))
+    else:
+        return default
+
+
+def sensordata(sensor_id=None, sensor_type=None):
+    begin = request_arg('begin', parse_datetime)
+    end = request_arg('end', parse_datetime)
+    mode = request.args.get('mode', 'full')
+    format = request.args.get('format', 'default')
+
+    if mode == 'full':
+        result = select_sensordata(sensor_id, sensor_type, begin, end)
+    elif mode == 'consolidated':
+        if begin is None or end is None:
+            abort(Response('begin and end have to be set for mode==consolidated', 400))
+        result = select_sensordata_grouped(sensor_id, sensor_type, begin, end)
+    else:
+        abort(Response('unknown value for mode', 400))
+
+    if format == 'c3':
+        return convert_to_c3(result, 'sensor_id', 'timestamp', 'value')
+    return result
+
+
+def openweathermapdata(cityid):
+    begin = request_arg('begin', parse_datetime)
+    end = request_arg('end', parse_datetime)
+    mode = request.args.get('mode', 'full')
+    format = request.args.get('format', 'default')
+
+    if mode == 'full':
+        result = select_openweatherdata(cityid, begin, end)
+    elif mode == 'consolidated':
+        if begin is None or end is None:
+            abort(Response('begin and end have to be set for mode==consolidated', 400))
+        result = select_openweatherdata_grouped(cityid, begin, end)
+    else:
+        abort(Response('unknown value for mode', 400))
+
+    if format == 'c3':
+        return convert_to_c3(result, 'cityid', 'datetime', 'temp')
+    return result
+
+
+def currentairtemperature(cityid):
+    result = OpenWeatherMap.query.filter_by(cityid=cityid).order_by(OpenWeatherMap.datetime.desc()).first()
+    return result.temp, result.datetime
+
+
+def currentwatertemperature(sensorid):
+    result = Sensors.query.filter_by(sensor_id=sensorid).order_by(Sensors.timestamp.desc()).first()
+    return result.value, result.timestamp
+
+
+def first_of_month(date, month):
+    date = date.replace(day=1)
+    if month == 0:
+        return date
+    if month == 1:
+        return (date + datetime.timedelta(days=42)).replace(day=1)
+    if month == -1:
+        return (date - datetime.timedelta(days=1)).replace(day=1)
+    assert False
+
+
+@app.route('/api/<version>/sensors/')
+def sensors(version):
+    """List all sensors found in the database"""
+    result = db.session.query(Sensors.sensor_id, Sensors.sensor_name, Sensors.value_type).distinct().all()
+    return jsonify(result)
+
+
+@app.route('/api/<version>/sensor/id/<sensor_id>')
+def sensorid(version, sensor_id):
+    """Return all data for a specific sensor
+
+    URL parameters:
+
+    * ``begin=<datetime>``, optional, format like ``2018-05-19T21:07:53``
+    * ``end=<datetime>``, optional, format like ``2018-05-19T21:07:53``
+    * ``mode=<full|consolidated>``, optional. return all rows (default) or with lower resolution (for charts)
+    * ``format=<default|c3>``, optional. return result as returned by sqlalchemy (default) or formatted for c3.js
+    """
+    result = sensordata(sensor_id=sensor_id)
+    return jsonify(result)
+
+
+@app.route('/api/<version>/sensor/type/<sensor_type>')
+def sensortype(version, sensor_type):
+    """Return all data for a specific sensor type
+
+    URL parameters:
+
+    * ``begin=<datetime>``, optional, format like ``2018-05-19T21:07:53``
+    * ``end=<datetime>``, optional, format like ``2018-05-19T21:07:53``
+    * ``mode=<full|consolidated>``, optional. return all rows (default) or with lower resolution (for charts)
+    * ``format=<default|c3>``, optional. return result as returned by sqlalchemy (default) or formatted for c3.js
+    """
+    result = sensordata(sensor_type=sensor_type)
+    return jsonify(result)
+
+
+@app.route('/api/<version>/openweathermap/cities')
+def openweathermap_cities(version):
+    """List all city IDs found in the database"""
+    result = db.session.query(OpenWeatherMap.cityid).distinct().all()
+    return jsonify(result)
+
+
+@app.route('/api/<version>/openweathermap/city/<cityid>')
+def openweathermap_city(version, cityid):
+    """List all data found for a city"""
+    result = openweathermapdata(cityid=cityid)
+    return jsonify(result)
+
+
+@app.route('/api/<version>/currentairtemperature')
+def currentair(version):
+    value, timestamp = currentairtemperature(cityid)
+    return jsonify({"value": value, "timestamp": timestamp})
+
+
+@app.route('/api/<version>/currentwatertemperature')
+def currentwater(version):
+    value, timestamp = currentwatertemperature(mainsensor)
+    return jsonify({"value": value, "timestamp": timestamp})
+
+
+@app.route('/report/<int(fixed_digits=4):year>/<int(fixed_digits=2):month>')
+def report(year, month):
+    """Report for given year (4 digits) and month (2 digits)
+    """
+    paper_size = (29.7 / 2.54, 21. / 2.54)  # A4
+
+    begin = datetime.datetime(year, month, 1)
+    end = first_of_month(begin, 1)
+
+    water_data = sensordata_to_xy(select_sensordata(mainsensor, 'Wassertemperatur', begin, end))
+    air_data = openweatherdata_to_xy(select_openweatherdata(cityid, begin, end))
+    swimmer_data = swimmerdata_to_xy(select_swimmerdata(begin, end))
+
+    report_times = [datetime.time(10), datetime.time(15)]
+    report_data = {'Wasser': water_data, 'Luft': air_data}
+
+    days_datetime = []
+    d = begin
+    while d < end:
+        days_datetime.append(d)
+        d = d + datetime.timedelta(1)
+
+    binary_pdf = io.BytesIO()
+    with PdfPages(binary_pdf) as pdf:
+        title = 'Seepark Obsteig {} {}'.format(MONTH_DE[begin.month-1], begin.year)
+
+        # graphic
+        plt.figure(figsize=paper_size)
+        report_colors = []
+        for label, data in sorted(report_data.items(), reverse=True):
+            x, y = data
+            lines = plt.plot(x, y, label=label)
+            report_colors.append(lines[0].get_color())
+        plt.xticks(days_datetime, [''] * len(days_datetime))
+        plt.ylabel('Temperatur in °C')
+        plt.axis(xmin=begin, xmax=end)
+        plt.legend()
+        plt.grid()
+        plt.title(title)
+
+        # table
+        columns = []
+        for d in days_datetime:
+            columns.append('{}.'.format(d.day))
+        rows = []
+        for label in sorted(report_data.keys(), reverse=True):
+            for t in report_times:
+                rows.append('{:02d}:{:02d} {} °C'.format(t.hour, t.minute, label))
+        for t in report_times:
+            rows.append('{:02d}:{:02d} Badende'.format(t.hour, t.minute))
+        cells = []
+        for label, data in sorted(report_data.items(), reverse=True):
+            for t in report_times:
+                row_cells = []
+                x, y = data
+                for d in days_datetime:
+                    report_datetime = datetime.datetime.combine(d.date(), t)
+                    closest_index = np.argmin(np.abs(x - report_datetime))
+                    if abs(x[closest_index] - report_datetime) > datetime.timedelta(hours=1):
+                        cell = 'N/A'
+                    else:
+                        value = y[closest_index]
+                        cell = '{:.1f}'.format(value)
+                    row_cells.append(cell)
+                cells.append(row_cells)
+        for t in report_times:
+            row_cells = []
+            x, y = swimmer_data
+            for d in days_datetime:
+                report_datetime = datetime.datetime.combine(d.date(), t)
+                closest_index = np.argmin(np.abs(x - report_datetime))
+                if abs(x[closest_index] - report_datetime) > datetime.timedelta(hours=1):
+                    cell = 'N/A'
+                else:
+                    cell = y[closest_index]
+                row_cells.append(cell)
+            cells.append(row_cells)
+        row_colors = list(ntimes(report_colors + ['w'], len(report_times)))
+        table = plt.table(cellText=cells, colLabels=columns, rowLabels=rows, rowColours=row_colors, loc='bottom')
+        table.scale(xscale=1, yscale=2)
+        plt.title(title)
+        plt.subplots_adjust(left=0.15, right=0.97, bottom=0.3)  # do not cut row labels
+        pdf.savefig()
+
+        pdf_info = pdf.infodict()
+        pdf_info['Title'] = title
+        pdf_info['Author'] = 'Chrisu Jähnl'
+        pdf_info['Subject'] = 'Temperaturen'
+        pdf_info['Keywords'] = 'Seepark Obsteig'
+        pdf_info['CreationDate'] = datetime.datetime.now()
+        pdf_info['ModDate'] = datetime.datetime.today()
+
+    response = make_response(binary_pdf.getvalue())
+    response.headers['Content-Type'] = 'application/pdf'
+    response.headers['Content-Disposition'] = 'attachment; filename=seepark_{:04d}-{:02d}.pdf'.format(year, month)
+    return response
+
 
 @app.route("/")
-def hello():
-    return render_template('seepark_web.html')
+def index():
+    airvalue, airtime     = currentairtemperature(cityid)
+    watervalue, watertime = currentwatertemperature(mainsensor)
+    this_month = first_of_month(datetime.date.today(), 0)
+    last_month = first_of_month(this_month, -1)
 
+    return render_template(
+        'seepark_web.html',
+        apikey=apikey,
+        watervalue=watervalue,
+        watertime=watertime,
+        airvalue=airvalue,
+        airtime=airtime,
+        this_month=this_month,
+        last_month=last_month
+    )