__tablename__ = 'sensors'
-def select_sensordata(initial_where):
- query = Sensors.query.filter(initial_where)
- begin = request.args.get('begin', None, parse_datetime)
- end = request.args.get('end', None, parse_datetime)
+def select_sensordata(sensor_id, sensor_type, begin, end, mode):
+ query = Sensors.query
+ if sensor_id is not None:
+ query = query.filter(Sensors.sensor_id == sensor_id)
+ if sensor_type is not None:
+ query = query.filter(Sensors.value_type == sensor_type)
if begin is not None:
query = query.filter(Sensors.timestamp >= begin)
if end is not None:
query = query.filter(Sensors.timestamp <= end)
- result = query.all()
-
- mode = request.args.get('mode', 'full')
- if mode == 'consolidated':
- if begin is None or end is None:
- pass
+ if mode == 'consolidated' and begin is None and end is None:
+ # copied from munin/master/_bin/munin-cgi-graph.in
+ # interval in seconds for data points
+ resolutions = dict(
+ day = 300,
+ week = 1800,
+ month = 7200,
+ year = 86400,
+ )
+ duration = (end - begin).total_seconds()
+ day = 60 * 60 * 24
+ if duration < day:
+ resolution = resolutions['day']
+ elif duration < 7 * day:
+ resolution = resolutions['week']
+ elif duration < 31 * day:
+ resolution = resolutions['month']
else:
- # copied from munin/master/_bin/munin-cgi-graph.in
- resolutions = dict(
- day = 300,
- week = 1800,
- month = 7200,
- year = 86400,
- )
- duration = (end - begin).total_seconds()
- day = 60 * 60 * 24
- if duration < day:
- resolution = resolutions['day']
- elif duration < 7 * day:
- resolution = resolutions['week']
- elif duration < 31 * day:
- resolution = resolutions['month']
- else:
- resolution = resolutions['year']
- # TODO: filter out samples from 'result'
- # like loop over results and skip if timestamp(n+1)-timestamp(n)<resolution
-
+ resolution = resolutions['year']
+ # TODO: filter out samples from 'result'
+ # something like
+ # select mean(temperature) from sensors where ... group by mod(timestamp, resolution)
+ # func.avg(...)
+ #
+ # from https://stackoverflow.com/questions/4342370/grouping-into-interval-of-5-minutes-within-a-time-range
+ # SELECT
+ # timestamp, -- not sure about that
+ # name,
+ # count(b.name)
+ # FROM time a, id
+ # WHERE …
+ # GROUP BY
+ # UNIX_TIMESTAMP(timestamp) DIV 300, name
+ return query.all()
+
+
+def convert_to_c3(result):
+ c3result = defaultdict(list)
+ for row in result:
+ c3result[row.sensor_id].append(row.value)
+ dt = row.timestamp.strftime('%Y-%m-%d %H:%M:%S')
+ c3result[row.sensor_id + '_x'].append(dt)
+ return c3result
+
+
+def sensordata(sensor_id=None, sensor_type=None):
+ begin = request.args.get('begin', None, parse_datetime)
+ end = request.args.get('end', None, parse_datetime)
+ mode = request.args.get('mode', 'full')
format = request.args.get('format', 'default')
+
+ result = select_sensordata(sensor_id, sensor_type, begin, end, mode)
+
if format == 'c3':
- c3result = defaultdict(list)
- for row in result:
- c3result[row.sensor_id].append(row.value)
- dt = row.timestamp.strftime('%Y-%m-%d %H:%M:%S')
- c3result[row.sensor_id + '_x'].append(dt)
- return c3result
- else:
- return result
+ return convert_to_c3(result)
+ return result
def currentairtemperature(apikey, cityid):
mode=<full|consolidated>, optional. return all rows (default) or with lower resolution (for charts)
format=<default|c3>, optional. return result as returned by sqlalchemy (default) or formatted for c3.js
"""
- result = select_sensordata(Sensors.sensor_id == sensor_id)
+ result = sensordata(sensor_id=sensor_id)
return jsonify(result)
mode=<full|consolidated>, optional. return all rows (default) or with lower resolution (for charts)
format=<default|c3>, optional. return result as returned by sqlalchemy (default) or formatted for c3.js
"""
- result = select_sensordata(Sensors.value_type == sensor_type)
+ result = sensordata(sensor_type=sensor_type)
return jsonify(result)