]> ToastFreeware Gitweb - chrisu/seepark.git/blobdiff - web/seepark_web.py
Add web target to Sphinx makefile.
[chrisu/seepark.git] / web / seepark_web.py
index b899a1730ebdfaea506fd652c7993f0d3b2d2779..41230299abbbd65ed49c2beb8aa144d307c50385 100644 (file)
@@ -1,4 +1,6 @@
+import collections
 import datetime
+import itertools
 import time
 import configparser
 import os
@@ -59,6 +61,11 @@ def parse_datetime(date_str):
     return datetime.datetime.strptime(date_str, '%Y-%m-%dT%H:%M:%S')
 
 
+def ntimes(it, n):
+    for v in it:
+        yield from itertools.repeat(v, n)
+
+
 def get_sqlalchemy_database_uri(config):
     user = config.get('database', 'user')
     pwd = config.get('database', 'password')
@@ -125,6 +132,13 @@ def select_sensordata(sensor_id, sensor_type, begin, end):
     return query.all()
 
 
+def sensordata_to_xy(sensordata):
+    sensordata = list(sensordata)
+    x = np.array([d.timestamp for d in sensordata])
+    y = np.array([d.value for d in sensordata])
+    return x, y
+
+
 def select_sensordata_grouped(sensor_id, sensor_type, begin, end):
     # determine resolution (interval in seconds for data points)
     resolution = calc_grouping_resolution(begin, end)
@@ -154,6 +168,13 @@ def select_openweatherdata(cityid, begin, end):
     return query.all()
 
 
+def openweatherdata_to_xy(openweatherdata):
+    openweatherdata = list(openweatherdata)
+    x = np.array([d.datetime for d in openweatherdata])
+    y = np.array([d.temp for d in openweatherdata])
+    return x, y
+
+
 def select_openweatherdata_grouped(cityid, begin, end):
     # determine resolution (interval in seconds for data points)
     resolution = calc_grouping_resolution(begin, end)
@@ -171,6 +192,32 @@ def select_openweatherdata_grouped(cityid, begin, end):
     return query.all()
 
 
+def estimate_swimmer_count(date):
+    return date.day
+
+
+def select_swimmerdata(begin, end):
+    def report_times(begin, end):
+        d = begin
+        while d < end:
+            for t in [10, 15]:
+                a = datetime.datetime.combine(d.date(), datetime.time(t))
+                if a >= d:
+                    yield a
+            d += datetime.timedelta(days=1)
+    SwimmerData = collections.namedtuple('SwimmerData', ['datetime', 'count'])
+    for d in report_times(begin, end):
+        count = estimate_swimmer_count(d)
+        yield SwimmerData(d, count)
+
+
+def swimmerdata_to_xy(swimmerdata):
+    swimmerdata = list(swimmerdata)
+    x = np.array([d.datetime for d in swimmerdata])
+    y = np.array([d.count for d in swimmerdata])
+    return x, y
+
+
 def convert_to_c3(result, id, field_x, field_y):
     c3result = defaultdict(list)
     for row in result:
@@ -311,12 +358,19 @@ def currentwater(version):
 
 @app.route('/report/<int:year>-<int:month>')
 def report(year, month):
+    """Report for given year and month
+    """
+    paper_size = (29.7 / 2.54, 21. / 2.54)  # A4
 
     begin = datetime.datetime(year, month, 1)
     end = add_month(begin)
-    data = list(select_sensordata(mainsensor, 'Wassertemperatur', begin, end))
-    x = np.array([d.timestamp for d in data])
-    y = np.array([d.value for d in data])
+
+    water_data = sensordata_to_xy(select_sensordata(mainsensor, 'Wassertemperatur', begin, end))
+    air_data = openweatherdata_to_xy(select_openweatherdata(cityid, begin, end))
+    swimmer_data = swimmerdata_to_xy(select_swimmerdata(begin, end))
+
+    report_times = [datetime.time(10), datetime.time(15)]
+    report_data = {'Wasser': water_data, 'Luft': air_data}
 
     days_datetime = []
     d = begin
@@ -326,16 +380,19 @@ def report(year, month):
 
     binary_pdf = io.BytesIO()
     with PdfPages(binary_pdf) as pdf:
-        a4 = (29.7/2.54, 21./2.54)
-        title = 'Seepark Wassertemperatur {} {}'.format(MONTH_DE[begin.month-1], begin.year)
-        report_times = [datetime.time(10), datetime.time(15)]
+        title = 'Seepark Obsteig {} {}'.format(MONTH_DE[begin.month-1], begin.year)
 
         # graphic
-        plt.figure(figsize=a4)
-        plt.plot(x, y)
+        plt.figure(figsize=paper_size)
+        report_colors = []
+        for label, data in sorted(report_data.items(), reverse=True):
+            x, y = data
+            lines = plt.plot(x, y, label=label)
+            report_colors.append(lines[0].get_color())
         plt.xticks(days_datetime, [''] * len(days_datetime))
         plt.ylabel('Temperatur in °C')
         plt.axis(xmin=begin, xmax=end)
+        plt.legend()
         plt.grid()
         plt.title(title)
 
@@ -344,23 +401,40 @@ def report(year, month):
         for d in days_datetime:
             columns.append('{}.'.format(d.day))
         rows = []
+        for label in sorted(report_data.keys(), reverse=True):
+            for t in report_times:
+                rows.append('{:02d}:{:02d} {} °C'.format(t.hour, t.minute, label))
         for t in report_times:
-            rows.append('Wasser {:02d}:{:02d} °C'.format(t.hour, t.minute))
+            rows.append('{:02d}:{:02d} Badende'.format(t.hour, t.minute))
         cells = []
+        for label, data in sorted(report_data.items(), reverse=True):
+            for t in report_times:
+                row_cells = []
+                x, y = data
+                for d in days_datetime:
+                    report_datetime = datetime.datetime.combine(d.date(), t)
+                    closest_index = np.argmin(np.abs(x - report_datetime))
+                    if abs(x[closest_index] - report_datetime) > datetime.timedelta(hours=1):
+                        cell = 'N/A'
+                    else:
+                        value = y[closest_index]
+                        cell = '{:.1f}'.format(value)
+                    row_cells.append(cell)
+                cells.append(row_cells)
         for t in report_times:
-            columns.append('{}.'.format(d.day))
             row_cells = []
+            x, y = swimmer_data
             for d in days_datetime:
                 report_datetime = datetime.datetime.combine(d.date(), t)
                 closest_index = np.argmin(np.abs(x - report_datetime))
                 if abs(x[closest_index] - report_datetime) > datetime.timedelta(hours=1):
                     cell = 'N/A'
                 else:
-                    value = y[closest_index]
-                    cell = '{:.1f}'.format(value)
+                    cell = y[closest_index]
                 row_cells.append(cell)
             cells.append(row_cells)
-        table = plt.table(cellText=cells, colLabels=columns, rowLabels=rows, loc='bottom')
+        row_colors = list(ntimes(report_colors + ['w'], len(report_times)))
+        table = plt.table(cellText=cells, colLabels=columns, rowLabels=rows, rowColours=row_colors, loc='bottom')
         table.scale(xscale=1, yscale=2)
         plt.title(title)
         plt.subplots_adjust(left=0.15, right=0.97, bottom=0.3)  # do not cut row labels
@@ -369,8 +443,8 @@ def report(year, month):
         pdf_info = pdf.infodict()
         pdf_info['Title'] = title
         pdf_info['Author'] = 'Chrisu Jähnl'
-        pdf_info['Subject'] = 'Wassertemperatur'
-        pdf_info['Keywords'] = 'Seepark Wassertemperatur'
+        pdf_info['Subject'] = 'Temperaturen'
+        pdf_info['Keywords'] = 'Seepark Obsteig'
         pdf_info['CreationDate'] = datetime.datetime.now()
         pdf_info['ModDate'] = datetime.datetime.today()