]> ToastFreeware Gitweb - chrisu/seepark.git/blobdiff - web/seepark_web.py
editorial change: move a def() around
[chrisu/seepark.git] / web / seepark_web.py
index 03d5760f5e3eb9eebb8d9af62d780864e78d6540..59e0c8b0264d8d0a0a9067afea2e2f9c1dc82e9c 100644 (file)
@@ -1,4 +1,3 @@
-from random import uniform
 import datetime
 import time
 import configparser
@@ -8,12 +7,7 @@ from collections import defaultdict
 from flask import Flask, render_template, jsonify, request, abort, Response
 import flask.json
 from flask_sqlalchemy import SQLAlchemy, inspect
-
-
-app_path = os.path.dirname(os.path.realpath(__file__))
-lib_path = os.path.join(app_path, '..')
-sys.path.append(lib_path)
-from seeparklib.openweathermap import openweathermap_json, OpenWeatherMapError
+from sqlalchemy import func
 
 
 # https://stackoverflow.com/a/37350445
@@ -47,7 +41,7 @@ config = configparser.ConfigParser()
 config.read(os.environ['SEEPARKINI'])
 apikey = config.get('openweathermap', 'apikey')
 cityid = config.get('openweathermap', 'cityid')
-mainsensor = config.get('temperature', 'mainsensor')
+mainsensor = config.get('webapp', 'mainsensor')
 
 app = Flask(__name__)
 app.json_encoder = JSONEncoder
@@ -65,7 +59,29 @@ class OpenWeatherMap(db.Model):
     __tablename__ = 'openweathermap'
 
 
-def select_sensordata(sensor_id, sensor_type, begin, end, mode):
+def calc_grouping_resolution(begin, end):
+    """How many data points should be between the timestamps begin and end?"""
+    # copied from munin/master/_bin/munin-cgi-graph.in
+    resolutions = dict(
+        day   =   300,
+        week  =  1800,
+        month =  7200,
+        year  = 86400,
+    )
+    duration = (end - begin).total_seconds()
+    day = 60 * 60 * 24
+    if duration <= day:
+        resolution = resolutions['day']
+    elif duration <= 7 * day:
+        resolution = resolutions['week']
+    elif duration <= 31 * day:
+        resolution = resolutions['month']
+    else:
+        resolution = resolutions['year']
+    return resolution
+
+
+def select_sensordata(sensor_id, sensor_type, begin, end):
     query = Sensors.query
     if sensor_id is not None:
         query = query.filter(Sensors.sensor_id == sensor_id)
@@ -75,68 +91,61 @@ def select_sensordata(sensor_id, sensor_type, begin, end, mode):
         query = query.filter(Sensors.timestamp >= begin)
     if end is not None:
         query = query.filter(Sensors.timestamp <= end)
-    if mode == 'consolidated' and begin is None and end is None:
-        # copied from munin/master/_bin/munin-cgi-graph.in
-        # interval in seconds for data points
-        resolutions = dict(
-            day   =   300,
-            week  =  1800,
-            month =  7200,
-            year  = 86400,
-        )
-        duration = (end - begin).total_seconds()
-        day = 60 * 60 * 24
-        if duration < day:
-            resolution = resolutions['day']
-        elif duration < 7 * day:
-            resolution = resolutions['week']
-        elif duration < 31 * day:
-            resolution = resolutions['month']
-        else:
-            resolution = resolutions['year']
-        # TODO: filter out samples from 'result'
-        # something like 
-        # select to_seconds(datetime) DIV (60*60*24) as interval_id, min(datetime), max(datetime), min(temp), avg(temp), max(temp), count(temp) from openweathermap group by interval_id order by interval_id;
     return query.all()
 
 
-def select_openweatherdata(cityid, begin, end, mode):
+def select_sensordata_grouped(sensor_id, sensor_type, begin, end):
+    # determine resolution (interval in seconds for data points)
+    resolution = calc_grouping_resolution(begin, end)
+
+    # Let the database do the grouping. Example in SQL (MySQL):
+    # select to_seconds(datetime) DIV (60*60*24) as interval_id, min(datetime), max(datetime), min(temp), avg(temp), max(temp), count(temp) from openweathermap group by interval_id order by interval_id;
+    query = db.session.query(func.to_seconds(Sensors.timestamp).op('div')(resolution).label('g'),
+            func.from_unixtime(func.avg(func.unix_timestamp(Sensors.timestamp))).label('timestamp'),
+            func.avg(Sensors.value).label('value'),
+            Sensors.sensor_id, Sensors.value_type, Sensors.sensor_name)
+    if sensor_id is not None:
+        query = query.filter(Sensors.sensor_id == sensor_id)
+    if sensor_type is not None:
+        query = query.filter(Sensors.value_type == sensor_type)
+    query = query.filter(Sensors.timestamp >= begin)
+    query = query.filter(Sensors.timestamp <= end)
+    query = query.group_by('g', Sensors.sensor_id, Sensors.value_type, Sensors.sensor_name)
+    return query.all()
+
+
+def select_openweatherdata(cityid, begin, end):
     query = OpenWeatherMap.query.filter(OpenWeatherMap.cityid == cityid)
     if begin is not None:
         query = query.filter(OpenWeatherMap.datetime >= begin)
     if end is not None:
         query = query.filter(OpenWeatherMap.datetime <= end)
-    if mode == 'consolidated' and begin is None and end is None:
-        # copied from munin/master/_bin/munin-cgi-graph.in
-        # interval in seconds for data points
-        resolutions = dict(
-            day   =   300,
-            week  =  1800,
-            month =  7200,
-            year  = 86400,
-        )
-        duration = (end - begin).total_seconds()
-        day = 60 * 60 * 24
-        if duration < day:
-            resolution = resolutions['day']
-        elif duration < 7 * day:
-            resolution = resolutions['week']
-        elif duration < 31 * day:
-            resolution = resolutions['month']
-        else:
-            resolution = resolutions['year']
-        # TODO: filter out samples from 'result'
-        # something like 
-        # select to_seconds(datetime) DIV (60*60*24) as interval_id, min(datetime), max(datetime), min(temp), avg(temp), max(temp), count(temp) from openweathermap group by interval_id order by interval_id;
     return query.all()
 
 
-def convert_to_c3(result):
+def select_openweatherdata_grouped(cityid, begin, end):
+    # determine resolution (interval in seconds for data points)
+    resolution = calc_grouping_resolution(begin, end)
+
+    # Let the database do the grouping. Example in SQL (MySQL):
+    # select to_seconds(datetime) DIV (60*60*24) as interval_id, min(datetime), max(datetime), min(temp), avg(temp), max(temp), count(temp) from openweathermap group by interval_id order by interval_id;
+    query = db.session.query(func.to_seconds(OpenWeatherMap.datetime).op('div')(resolution).label('g'),
+            func.from_unixtime(func.avg(func.unix_timestamp(OpenWeatherMap.datetime))).label('datetime'),
+            func.avg(OpenWeatherMap.temp).label('temp'),
+            OpenWeatherMap.cityid)
+    OpenWeatherMap.query.filter(OpenWeatherMap.cityid == cityid)
+    query = query.filter(OpenWeatherMap.datetime >= begin)
+    query = query.filter(OpenWeatherMap.datetime <= end)
+    query = query.group_by('g', OpenWeatherMap.cityid)
+    return query.all()
+
+
+def convert_to_c3(result, id, field_x, field_y):
     c3result = defaultdict(list)
     for row in result:
-        c3result[row.sensor_id].append(row.value)
-        dt = row.timestamp.strftime('%Y-%m-%d %H:%M:%S')
-        c3result[row.sensor_id + '_x'].append(dt)
+        c3result[str(getattr(row, id))].append(getattr(row, field_y))
+        dt = getattr(row, field_x).strftime('%Y-%m-%d %H:%M:%S')
+        c3result[str(getattr(row, id)) + '_x'].append(dt)
     return c3result
 
 
@@ -160,10 +169,17 @@ def sensordata(sensor_id=None, sensor_type=None):
     mode = request.args.get('mode', 'full')
     format = request.args.get('format', 'default')
 
-    result = select_sensordata(sensor_id, sensor_type, begin, end, mode)
+    if mode == 'full':
+        result = select_sensordata(sensor_id, sensor_type, begin, end)
+    elif mode == 'consolidated':
+        if begin is None or end is None:
+            abort(Response('begin and end have to be set for mode==consolidated', 400))
+        result = select_sensordata_grouped(sensor_id, sensor_type, begin, end)
+    else:
+        abort(Response('unknown value for mode', 400))
 
     if format == 'c3':
-        return convert_to_c3(result)
+        return convert_to_c3(result, 'sensor_id', 'timestamp', 'value')
     return result
 
 
@@ -173,20 +189,23 @@ def openweathermapdata(cityid):
     mode = request.args.get('mode', 'full')
     format = request.args.get('format', 'default')
 
-    result = select_openweatherdata(cityid, begin, end, mode)
+    if mode == 'full':
+        result = select_openweatherdata(cityid, begin, end)
+    elif mode == 'consolidated':
+        if begin is None or end is None:
+            abort(Response('begin and end have to be set for mode==consolidated', 400))
+        result = select_openweatherdata_grouped(cityid, begin, end)
+    else:
+        abort(Response('unknown value for mode', 400))
 
     if format == 'c3':
-        return convert_to_c3(result)
+        return convert_to_c3(result, 'cityid', 'datetime', 'temp')
     return result
 
 
-def currentairtemperature(apikey, cityid):
-    """Retruns the tuple temperature, datetime (as float, datetime) in case of success, otherwise None, None."""
-    try:
-        url, weatherdata = openweathermap_json(apikey, cityid)
-        return weatherdata['main']['temp'], datetime.datetime.fromtimestamp(weatherdata['dt'])
-    except OpenWeatherMapError:
-        return None, None
+def currentairtemperature(cityid):
+    result = OpenWeatherMap.query.filter_by(cityid=cityid).order_by(OpenWeatherMap.datetime.desc()).first()
+    return result.temp, result.datetime
 
 
 def currentwatertemperature(sensorid):
@@ -243,39 +262,9 @@ def openweathermap_city(version, cityid):
     return jsonify(result)
 
 
-@app.route('/data/', defaults={'timespan': 1})
-@app.route("/data/<int:timespan>", methods=['GET'])
-def data(timespan):
-    granularity = 5 * timespan               # (every) minute(s) per day
-    samples = 60/granularity * 24 * timespan # per hour over whole timespan
-    s4m   = []
-    s4m_x = []
-    s5m   = []
-    s5m_x = []
-    end   = time.time()
-    start = end - samples * granularity * 60
-
-    for i in range(int(samples)):
-        s4m.append(uniform(-10,30))
-        s5m.append(uniform(-10,30))
-        s4mt = uniform(start, end)
-        s5mt = uniform(start, end)
-        s4m_x.append(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(s4mt)))
-        s5m_x.append(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(s5mt)))
-
-    data = {
-        '0316a2193bff':   s4m,
-        '0316a2193bff_x': s4m_x,
-        '0316a21383ff':   s5m,
-        '0316a21383ff_x': s5m_x,
-        }
-
-    return jsonify(data)
-
-
 @app.route("/")
 def index():
-    airvalue, airtime     = currentairtemperature(apikey, cityid)
+    airvalue, airtime     = currentairtemperature(cityid)
     watervalue, watertime = currentwatertemperature(mainsensor)
 
     return render_template(