]> ToastFreeware Gitweb - philipp/winterrodeln/wrpylib.git/blobdiff - scripts/update_car_distances.py
VAO is missing important streets in Switzerland.
[philipp/winterrodeln/wrpylib.git] / scripts / update_car_distances.py
index 0bb839335ef12f357d1d3deff5508f4f46e9eb61..d9f7abf40e61db7b4f92941b3943b5cd19a0e08b 100644 (file)
@@ -1,17 +1,17 @@
 #!/usr/bin/python
 import argparse
 import configparser
-import csv
 import re
-import sqlite3
+import sys
+import time
+from copy import deepcopy
 from datetime import timedelta
-from itertools import islice
 from typing import List, NamedTuple, Optional
 
 import isodate
 import jsonschema
 from osgeo import ogr
-from osgeo.ogr import Layer, DataSource, Geometry, wkbPoint, Feature
+from osgeo.ogr import Layer, Geometry, wkbPoint, Feature
 from osgeo.osr import SpatialReference, CoordinateTransformation, OAMS_TRADITIONAL_GIS_ORDER
 
 from wrpylib.json_tools import order_json_keys, format_json
@@ -27,7 +27,12 @@ class DistInfo(NamedTuple):
     co2_kg: float
 
 
-def vao_car_distance(vao: Vao, parking_lon: float, parking_lat: float, city: Feature) -> Optional[DistInfo]:
+class VaoError(RuntimeError):
+    pass
+
+
+def try_vao_car_distance(vao: Vao, parking_lon: float, parking_lat: float, city: Feature) -> DistInfo:
+    """may throw VaoError with JSON decoded response as argument"""
     geometry = city.GetGeometryRef()
     point = geometry.GetPoint(0)
     city_lon, city_lat, _ = point
@@ -49,17 +54,59 @@ def vao_car_distance(vao: Vao, parking_lon: float, parking_lat: float, city: Fea
             duration_minutes = int(round(duration / timedelta(minutes=1)))
             dist_m = leg['dist']
             co2_kg = trip[0]['Eco']['co2']
-            return DistInfo(city['name'], city['geonameid'], duration_minutes, dist_m, co2_kg)
+            return DistInfo(city['name'], city['geonames_id'], duration_minutes, dist_m, co2_kg)
+    raise VaoError(response)
+
+
+def vao_car_distance(vao: Vao, parking_lon: float, parking_lat: float, city: Feature, retry_count: int = 2) -> DistInfo:
+    for c in range(retry_count):
+        try:
+            return try_vao_car_distance(vao, parking_lon, parking_lat, city)
+        except VaoError as vao_error:
+            response = vao_error.args[0]
+            if response.get('errorCode') is not None:
+                print(response['errorCode'], response.get('errorText'), f'(attempt {c+1}/{retry_count})')
+                if response['errorCode'] == 'SVC_NO_RESULT':
+                    time.sleep(2.)
+                    continue
+            else:
+                print('Unexpected result from VAO')
+            sys.exit(1)
+
+
+def distance_meter(a: Geometry, b: Geometry) -> float:
+    spatial_reference_ll = SpatialReference()
+    spatial_reference_ll.ImportFromEPSG(4326)
+    spatial_reference_ll.SetAxisMappingStrategy(OAMS_TRADITIONAL_GIS_ORDER)
+
+    spatial_reference_m = SpatialReference()
+    spatial_reference_m.ImportFromProj4(f'+proj=merc +lat_ts={(a.GetY() + b.GetY()) / 2}')
+
+    ll_to_m = CoordinateTransformation(spatial_reference_ll, spatial_reference_m)
+
+    a_m = a.Clone()
+    a_m.Transform(ll_to_m)
+
+    b_m = b.Clone()
+    b_m.Transform(ll_to_m)
+
+    return a_m.Distance(b_m)
+
+
+def dist_info_to_dict(dist_info: DistInfo) -> dict:
+    return {
+        'km': round(dist_info.dist_m / 1000, 1),
+        'route': dist_info.city_name,
+        'minutes': dist_info.duration_minutes,
+        'geonames_id': dist_info.geoname_id,
+        'onward_co2_kg': round(dist_info.co2_kg, 1),
+    }
 
 
 def update_sledrun(vao: Vao, db_cities: Layer, site: WikiSite, title: str):
     sledrun_json_page = site.query_page(f'{title}/Rodelbahn.json')
     sledrun_json = page_json(sledrun_json_page)
 
-    # for now...
-    if 'car_distances' in sledrun_json:
-        return
-
     sledrun_json_orig = sledrun_json.copy()
 
     car_parking = sledrun_json.get('car_parking')
@@ -74,48 +121,76 @@ def update_sledrun(vao: Vao, db_cities: Layer, site: WikiSite, title: str):
     parking_lon = parking['longitude']
     parking_lat = parking['latitude']
 
+    car_distance_list = deepcopy(sledrun_json.get('car_distances', []))
+    if len([car_distance for car_distance in car_distance_list if car_distance.get('geonames_id') is not None]) > 0:
+        return
+
+    db_cities.SetSpatialFilter(None)
+    db_cities.SetAttributeFilter(None)
+    for car_distance in car_distance_list:
+        if car_distance.get('geonames_id') is None:
+            name = car_distance['route']
+            match = re.match(r'([-\w. ]+)\(?.*$', name)
+            if match is not None:
+                name = match.group(1).strip()
+                candidates = [city for city in db_cities if city['name'] == name]
+                if len(candidates) == 1:
+                    city = candidates[0]
+                    dist_info = vao_car_distance(vao, parking_lon, parking_lat, city)
+                    if dist_info is not None:
+                        dist_info_dict = dist_info_to_dict(dist_info)
+                        car_distance.update(dist_info_dict)
+
     spatial_reference_ll = SpatialReference()
     spatial_reference_ll.ImportFromEPSG(4326)
     spatial_reference_ll.SetAxisMappingStrategy(OAMS_TRADITIONAL_GIS_ORDER)
 
     spatial_reference_m = SpatialReference()
     spatial_reference_m.ImportFromProj4(f'+proj=merc +lat_ts={parking_lat}')
-    # spatial_reference_m.ImportFromProj4(f'+proj=merc')
 
     ll_to_m = CoordinateTransformation(spatial_reference_ll, spatial_reference_m)
     m_to_ll = CoordinateTransformation(spatial_reference_m, spatial_reference_ll)
 
-    loc_ll = Geometry(wkbPoint)
-    loc_ll.AddPoint(parking_lon, parking_lat)
-    # print(loc_ll.ExportToWkt())
+    parking_ll = Geometry(wkbPoint)
+    parking_ll.AddPoint(parking_lon, parking_lat)
 
-    loc_m = loc_ll.Clone()
-    loc_m.Transform(ll_to_m)
-    # print(loc_m.ExportToWkt())
+    parking_m = parking_ll.Clone()
+    parking_m.Transform(ll_to_m)
     max_dist_m = 60000
-    bound_m = loc_m.Buffer(max_dist_m)
-    # print(bound_m.ExportToWkt())
+    bound_m = parking_m.Buffer(max_dist_m)
     bound_ll = bound_m.Clone()
-    # print(bound_ll.ExportToWkt())
     bound_ll.Transform(m_to_ll)
-    # print(bound_ll.ExportToWkt())
 
     db_cities.SetSpatialFilter(bound_ll)
     db_cities.SetAttributeFilter('level<=2')
-    dist_info_list = []
-    for city in db_cities:
-        dist_info = vao_car_distance(vao, parking_lon, parking_lat, city)
-        if dist_info is not None:
-            dist_info_list.append(dist_info)
-    dist_info_list = sorted(dist_info_list, key=lambda di: di.dist_m)[:3]
-    car_distances = [{
-        'km': round(di.dist_m / 1000, 1),
-        'route': di.city_name,
-        'minutes': di.duration_minutes,
-        'geonames_id': di.geoname_id,
-        'onward_co2_kg': round(di.co2_kg, 1),
-    } for di in dist_info_list]
-    sledrun_json['car_distances'] = car_distances
+    close_cities = [city for city in db_cities]
+    close_cities = sorted(close_cities, key=lambda city: distance_meter(city.GetGeometryRef(), parking_ll))
+
+    max_number_distances = 3
+    car_distances_to_append: List[dict] = []
+    for city in close_cities:
+        if len(car_distances_to_append) >= max_number_distances:
+            if car_distances_to_append[2]['km'] * 1000 < distance_meter(city.GetGeometryRef(), parking_ll):
+                break
+        print(city['name'])
+        car_distance = next((cd for cd in car_distance_list if cd.get('geonames_id') == city['geonames_id']), None)
+        if car_distance is None:
+            car_distance = vao_car_distance(vao, parking_lon, parking_lat, city)
+            if car_distance is not None:
+                car_distance = dist_info_to_dict(car_distance)
+        if car_distance is not None:
+            car_distances_to_append.append(car_distance)
+        car_distances_to_append = sorted(car_distances_to_append, key=lambda di: di['km'])
+
+    car_distances_to_append = sorted(car_distances_to_append, key=lambda di: di['km'])[:max_number_distances]
+
+    for car_distance in car_distances_to_append:
+        if len([cd for cd in car_distance_list if cd.get('geonames_id') == car_distance['geonames_id']]) == 0:
+            car_distance_list.append(car_distance)
+
+    car_distance_list = sorted(car_distance_list, key=lambda di: di['km'])
+    sledrun_json['car_distances'] = car_distance_list
+
     if sledrun_json == sledrun_json_orig:
         return
 
@@ -128,7 +203,7 @@ def update_sledrun(vao: Vao, db_cities: Layer, site: WikiSite, title: str):
         'edit',
         pageid=sledrun_json_page['pageid'],
         text=sledrun_json_str,
-        summary=f'Entfernungen zu {title} eingefügt (dank VAO).',
+        summary=f'Entfernungen zu {title} aktualisiert (dank VAO).',
         # minor=1,
         bot=1,
         baserevid=sledrun_json_page['revisions'][0]['revid'],
@@ -155,6 +230,8 @@ def update_car_distances(ini_files: List[str]):
     for result in site.query(list='categorymembers', cmtitle='Kategorie:Rodelbahn', cmlimit='max'):
         for page in result['categorymembers']:
             print(page['title'])
+            if page['title'] in ['Anzère', 'Hochhäderich (Falkenhütte)', 'Hochlitten-Moosalpe', 'Saas-Fee']:
+                continue
             update_sledrun(vao, db_cities, site, page['title'])